数学没有定论
2021年4月2日
证明并非确定性
Naval:
还有两位我欣赏的科学思想家得出了与Deutsch相似的结论。
一位是Nassim Taleb,他普及了黑天鹅的概念,即无论看到多少只白天鹅都无法证明黑天鹅不存在。你永远不能确定地说所有天鹅都是白色的。你永远无法建立终极真理。你所能做的就是运用你今天拥有的最佳解释,这仍然远比无知要好。任何时候都可能出现一只黑天鹅来推翻你的理论,然后你必须去寻找更好的理论。
另一位我觉得很吸引人的是Gregory Chaitin。他是一位与Kurt Gödel风格非常相似的数学家,因为他探索数学中可能性的界限和边界。他提出的一个观点是,哥德尔不完备定理并不是说数学是垃圾;这个定理不是令人绝望的原因。哥德尔不完备定理指出,任何形式系统——包括数学——都不可能既完备又正确。要么系统中存在无法被证明为真的真陈述,要么系统内部某处会出现矛盾。
对于那些将数学视为抽象、完美、完全自足之物的数学家来说,这可能是令人绝望的原因。但Chaitin论证说,实际上,它为数学中的创造性打开了大门。这意味着即使在数学中,你也总是离证伪某个东西并为之找到更好解释只有一步之遥。它将人类及其创造力以及他们寻找良好解释的努力重新置于核心位置。
在某个深层意义上,数学仍然是一门艺术。当然,数学产生了非常有用的东西。你仍然在构建知识大厦,但不存在决定性的、固定的真理。没有固定的科学,也没有固定的数学。只有良好的解释,这些解释会随着时间被能够解释更多世界的更好解释所取代。
Brett:
这是我们从学校教育中继承的东西,比其他任何东西都更甚。这是我们学术文化的一部分,也渗透到更广泛的文化中。人们有一种观念,认为数学是一个纯粹的知识领域,被证明为真的东西就肯定是真的。
然后你有科学,它不给你确定的真理,但你可以对你发现的东西高度自信。你可以用实验来确认你所说的似乎是正确的,但你可能错了。当然,还有哲学,那纯粹是意见问题。
这是有些人从学校继承的等级体系:数学是确定的,科学几乎是确定的,其余的多多少少是意见问题。这就是Deutsch所说的数学家的误解。数学家们有一种直觉的方式,认为他们的证明——他们通过这种证明方法得出的定理——是绝对、肯定正确的。
事实上,这是对主题本身和他们对该主题的知识之间的混淆。