原文(English) 原博客链接

做数学必须得是天才吗?

最好警惕像天才和灵感这样的概念;它们是一种魔法棒,任何想要看清事物的人都不应过多使用。 (何塞·奥尔特加·加塞特,《关于小说的笔记》)

做数学必须得是天才吗?

答案是斩钉截铁的。为了对数学做出良好而有用的贡献,人们确实需要努力工作学好自己的领域,学习其他领域工具提出问题与其他数学家交流,并思考"大局"。是的,还需要合理程度的智力、耐心成熟度。但人们并不需要某种神奇的"天才基因",能够凭空自发产生深刻的洞见、问题的意外解决方案或其他超自然能力。

那种孤独(可能还有点疯狂)的天才的流行形象——他无视文献和其他传统智慧,通过某种难以解释的灵感(也许还加上大量痛苦的加持)设法想出一个令所有专家困惑的问题的惊人原创解决方案——是一个迷人和浪漫的形象,但也是一个极其不准确的形象,至少在现代数学世界是如此。我们当然在这个学科中有壮观、深刻和卓越的结果和洞见,但它们是许多优秀和伟大数学家多年、几十年甚至几个世纪稳定工作和进步的艰苦累积成就;从一个理解阶段到下一个阶段的进展可能非常不平凡,有时相当出人意料,但仍然建立在早期工作的基础上,而不是完全从头开始。(例如怀尔斯关于费马大定理的工作,或佩雷尔曼关于庞加莱猜想的工作就是这种情况。)

实际上,我发现今天数学研究的现实——其中进步是通过努力工作自然累积获得的,由直觉、文献和一点运气引导——比我作为学生时认为数学进步主要靠某些罕见"天才"的神秘灵感的浪漫形象要令人满意得多。这种 “天才崇拜”实际上引起了许多问题,因为没有人能够以接近规律的频率和可靠一致的准确性产生这些(非常罕见的)灵感。(如果有人假装能做到,我建议你对他们的说法持非常怀疑的态度。)试图以这种不可能的方式行事的压力可能导致一些人过度沉迷于"大问题"或"大理论",其他人失去对自己工作或工具的健康怀疑态度,还有其他人变得过于沮丧而无法继续从事数学工作。此外,将成功归因于先天才能(这是超出个人控制的)而不是努力、规划和教育(这些是个人可以控制的)也可能导致其他一些问题

当然,即使人们摒弃天才的概念,仍然存在这样的情况:在任何给定时间点,一些数学家比其他人更快、更有经验、更博学、更高效、更仔细或更有创造力。但这并不意味着只有"最好"的数学家才应该做数学;这是将绝对优势误认为比较优势的常见错误。有趣的数学研究领域和问题数量巨大——远多于仅由"最好"的数学家能够详细覆盖的范围,有时你拥有的工具或想法集会发现其他优秀数学家忽略的东西,特别是考虑到即使最伟大的数学家在数学研究的某些方面仍然有弱点。只要你有教育、兴趣和合理程度的天赋,总会有数学的某个部分你可以做出坚实而有用的贡献。它可能不是数学中最迷人的部分,但实际上这往往是健康的事情;在许多情况下,一个学科的平凡基础部分实际上比任何花哨的应用更重要。此外,在真正有机会解决该领域著名问题之前,有必要在一个领域的不迷人部分"磨炼技能";看看今天任何伟大数学家的早期出版物,就能明白我的意思。

在某些情况下,丰富的原始天赋可能(有些反常地)最终对个人的长期数学发展有害;例如,如果问题的解决方案来得太容易,人们可能不会投入太多精力去努力工作提出愚蠢的问题扩大自己的范围,从而最终导致技能停滞不前。此外,如果一个人习惯于轻松成功,可能无法发展处理真正困难问题所需的耐心(另见彼得·诺维格的这个演讲了解软件工程中的类似现象,但另见这个澄清)。天赋当然重要;但如何发展和培养它更为重要。

同样要记住,专业数学不是一项运动(与数学竞赛形成鲜明对比)。数学的目标不是获得最高排名、最高"分数"或最多奖项;而是增加对数学的理解(既为你自己,也为你的同事和学生),并为其发展和应用做出贡献。对于这些任务,数学需要所有它能得到的好人才。

延伸阅读:

  • 如何成为天才",大卫·多布斯,《新科学家》,2006年9月15日。[感谢萨米尔·乔姆斯基提供此链接。]

  • 卓越的平凡性",丹尼尔·钱布利斯,《社会学理论》,第7卷,第1期,(1989年春季),70-86。[感谢约翰·贝兹提供此链接。]


更新,2023年7月23日:我欣然承认我自己的数学教育至少可以说是有些异常的。然而,这篇文章主要不是基于我个人的教育经历,而是基于我几十年来与他人讨论数学的经验(研究生和本科生、博士后、合作者和同事、我的讲座和公开演讲的听众、我的论文、书籍和博客文章的读者、我的孩子和他们的同学、记者、社交聚会上的朋友和熟人等)。我在这里给出了一个例子。

第二次更新,2024年3月18日:这篇文章已转载于:陶哲轩,"做数学必须得是天才吗?"《美国数学会通告》第71卷,第1期(2024年),30—32。