原文(English) 原博客链接

持续瞄准略超出你当前能力范围的目标

一个成功的人通常会设定一个比上次成就稍高但不过高的下一个目标。通过这种方式,他稳步提升自己的抱负水平。

库尔特·勒温

在棋手中,普遍认为提高技能最有效的方法之一是持续与评分略高于你的对手对弈。在数学中,对手是未解决或理解不完善的数学问题、概念和理论,而不是其他数学家;但原则大致相同。

每个数学家,在任何给定的时间点,都有一个"范围";一个可以使用现有知识、直觉、经验和"技巧库"有效处理的数学领域。这个范围内的问题对这个数学家来说不一定简单、容易或常规,但他或她会清楚如何开始处理问题,主要困难是什么,应该在文献中哪里寻找指导,哪些方法可能有效,哪些不会,等等。相比之下,对于远超出范围的问题,如何比较各种竞争方法的可行性,甚至如何提出方法,都会变得不那么明显。

研究数学家常常容易陷入只处理完全在能力范围内问题的舒适习惯;这保证了稳定但平庸的体面出版物,并省去了学习新领域、新观点、新发展或新技术的努力。但是,虽然练习已经掌握的技能确实有价值,并且撰写可发表的论文对职业生涯无疑具有短期价值,但完全采用这种保守方法存在长期机会成本;数学理解和技术不断进步,最终来自其他领域或其他方法的新思想将在你自己的专业领域发挥越来越重要的作用,特别是如果你工作的领域对其他人特别感兴趣。如果不承认并适应这些发展,例如通过学习新工具,长期风险是你的技巧库可能逐渐过时,或者你的结果可能失去相关性并越来越被视为"无聊"。

在另一个极端,存在放弃对现有研究进行渐进改进和完善的繁琐过程,直接跳到真正著名或困难的未解决问题,或发展一些激进的新理论的诱惑,希望获得数学上的"中彩票"。在这些方向上保持一定程度的雄心是健康的;例如,如果你或你的同事刚刚开发了该领域有前途的新技术,重新审视以前被认为太难而无法触及的问题或概念,看看现在是否有取得戏剧性进展的潜力,确实是有意义的。但在许多情况下,朝着如此雄心勃勃的目标努力是为时过早的,特别是如果你对现有文献不够熟悉,无法了解某些方法的局限性,或者不知道哪些部分结果已经已知,哪些是可行的,哪些将代表实质性的新进展。只研究最困难的问题也可能令人沮丧,并且充满兴奋地宣布错误解决方案,最终尴尬地撤回那个高调公告的风险。

偶尔,我们会看到一个强大的数学家在他或她职业生涯早期取得了一些惊人的成果,但随后感到有义务不断"超越"该成果,因此从那时起只研究真正高调的问题,鄙视能够稳步提高他或她范围的更渐进的工作。我觉得,这可能是一种发展有前途才能的低效方式;做出有用且稳定的进步并不丢脸,从长远来看,这至少与轰动性突破一样有价值。

我相信发展才能的最佳方式是投资于这两个极端之间的中间地带,从而以精心控制的量向你的研究计划添加新的挑战和困难。此类研究目标的例子包括:

  • 查看你无法用现有工具完全处理的最简单的感兴趣问题,例如通过取一个未解决的问题并进行各种假设来"关闭"除一个困难之外的所有困难;
  • 取一个已知结果并通过"把一只手绑在背后"来重新证明它,禁止自己使用对该结果有效但不能很好地扩展到更困难问题的方法;或者
  • 取一个已知结果并将其推广到一种情况,其中现有结果标准证明中的大多数步骤看起来可以扩展,但只有一两个部分看起来棘手,需要一些适度的新想法、技巧或见解。

(另见"[问自己愚蠢的问题](ask yourself dumb questions)"。)不要在意由此产生的项目看起来如此微不足道以至于你不好意思发表(尽管这类事情往往能成为精彩的说明性笔记,我建议使其可用);这不是关于发表论文的短期目标,而是关于扩展你范围的长期目标。这有点类似于在长期投资中利用复利的力量;例如,想象一下,如果你能够每年将你的范围提高约10%,几十年后你的数学能力会是什么样子。

继续投资类比,拥有多样化的"研究组合"也是明智的,将部分研究时间投入到"低风险、低回报"类别的完全在能力范围内的研究问题中,较大比例投入到"中等风险、中等回报"类别的刚好超出能力范围的问题中,小比例投入到"高风险、高回报"类别的远超出能力范围的问题中。

扩展范围的另一个极好方法,我强烈推荐,是与相邻领域的人合作;我自己通过这种方式接触了许多不同的数学领域。如果合作者与你有相当的经验,这样你们在大致相同的水平上看待事物,因此你们每个人都可以轻松地相互交流见解、直觉和知识,这似乎特别有效。(另见"参加讲座和会议,即使那些与你自己的工作没有直接关系"。)

第三种方法,我也发现非常有效,是教授一个你只部分理解的主题的课程,这样它迫使你在实际向学生讲授时对其有更好的掌握。(当然,如果某个主题变得太难、太技术性或过于依赖某些外部主题而难以在你的课堂上轻松教授,必须在教学大纲中允许一定的灵活性。)投入时间为这门课编写讲义非常有价值,无论是对你自己、你的学生,还是对未来想要理解该主题的其他数学家。(另见"不要害怕学习你领域之外的东西"。)

类似地:当尝试使用给定的一组技术解决一个具有挑战性的问题时,我建议首先用一个更简单的问题替换该问题(例如一个特例,或问题的玩具模型,或问题的非正式版本,其中启用了各种不严格的"作弊",例如忽略你认为可以忽略的任何项,某些概率启发式实际上是定理,或者假设任何你原则上可以推导出的合理代数恒等式实际上成立),目的是转移到使用你想到的技术不能立即解决但你相信仍然应该适合这些技术的最简单版本的问题。这倾向于将注意力集中在扩展这些技术范围所需的确切内容上,然后可以向后工作回到原始问题。应用此方法的一个特别好的模型问题是似乎刚好超出你预期技术范围但仍然可以通过不同方法解决的问题;在这种情况下,通过其他方法的证明可以提供关于如何继续使用预期方法的宝贵线索,并且还可以通过排除不可能有效的证明策略来节省时间,因为这些策略与来自该其他方法的结论相矛盾。