原文(English)

善用英语语言

使用温和的言辞和有力的论证。 (谚语)

数学符号是一种非常有用的工具,第一次学习∀、∃、∈、⊂等神秘而深奥符号的含义时可能会令人兴奋。然而,仅仅因为您能够用纯数学符号书写语句,并不意味着您必然应该这样做。在许多情况下,实际上大量使用通俗英语会更具信息性和可读性;如果正确且深思熟虑地使用,英语语言可以在不牺牲任何精确性或严谨性的情况下,在更多层面上与读者交流。特别是,通过微妙地调整文本的强调,可以传达关于一个陈述如何与论证的其余部分互动的有价值的上下文线索。

一个例子应该能说明这一点。例如,假设P和Q是可以应用于数学对象x和y的属性。数学陈述

P(x) ∧ Q(y)

断言x满足P且y满足Q,是一个形式良好且精确的数学陈述。但有许多可能的方式可以用英语表达该数学陈述,例如:

  • P(x)和Q(y)都为真。
  • P(x)为真。此外,Q(y)为真。
  • P(x)为真。而且,Q(y)为真。
  • P(x)为真。因此,Q(y)为真。
  • P(x)为真。然而,Q(y)为真。
  • P(x)为真。特别地,Q(y)为真。
  • P(x)为真。也许更有趣的是,Q(y)也为真。
  • 由于P(x)为真,Q(y)为真。
  • P(x)为真(这意味着例如Q(y)为真)。
  • P(x)为真。不幸的是,Q(y)也为真。
  • P(x)为真。等价地,Q(y)为真。
  • x满足P,但y满足Q。
  • x满足P,因此y满足Q。
  • x满足P。同时,y满足Q。
  • x满足P;相比之下,y满足Q。
  • x满足P。更一般地,y满足Q。
  • x满足P。换句话说,y满足Q。
  • x显然满足P。稍加思考也揭示y满足Q。
  • x满足P(因为y满足Q)。
  • x满足P。为将来参考,我们还观察到y满足Q。
  • x满足P。对我们来说幸运的是,y满足Q。
  • P由x满足。类似地,Q由y满足。
  • P由x满足。另一方面,Q由y满足。
  • x(分别地y)满足P(分别地Q)。
  • P和Q被满足(分别由x和y)。
  • x和y分别满足P和Q。
  • 等等,等等。

从形式数理逻辑的角度来看,这些英语陈述中的每一个在逻辑上都等价于数学句子P(x) ∧ Q(y)。然而,上述每个英语陈述还为读者提供了关于组成部分陈述P(x)和Q(y)或组成部分符号P、x、Q和y的相对重要性、非平凡性和因果关系的额外有用且信息丰富的线索。例如,在其中一些句子中,P(x)和Q(y)被赋予同等重要性(相互补充或以某种方式对立),而在其他句子中,P(x)只是一个辅助陈述,其唯一目的是推导Q(y)(反之亦然),而在另一些句子中,P(x)和Q(y)被认为是类似的,即使一个不能从另一个形式上推导出来。在一些句子中,对象x和y被指示为主要参与者;在其他句子中,是属性P和Q;而在另一些句子中,是组合陈述P(x)和Q(y)最为核心。

因此我们看到,英语句子可能比其形式数学对应物更具表现力,同时仍保持数学阐述所要求的精确性和严谨性。通过使用诸如"也"、“但是”、“由于"等谦逊的英语单词,一个句子不仅传达其语义内容,还传达它将如何与论证的其余部分(或该主题的更广泛理论)相契合,使读者对该论证的整体结构有更多洞察。论文可能因此变得稍长一些,但这是为可读性(这等同于简洁性!)付出的一个小代价。

另一方面,人们不应试图通过使用过于花哨或晦涩的词语(来自英语或任何其他语言)来过度"改进”论文,特别是因为这样的词语可能被误认为是某种技术数学术语。在许多情况下,可以用更简单的等价词替换复杂的词语,从而在不损害信息的情况下提高文本的可读性。数学写作的主要目的是交流告知,而不是给人留下深刻印象

最后,有一种情况确实有意义使用数学符号的简洁语言而不是更从容的英语等价物,那就是当您正在执行繁琐且标准的正式计算时。在这些情况下,读者应该已经大致知道会发生什么(特别是如果您事先将计算标记为标准计算),并且会被多余的说明或离题分散注意力。(另请参阅"给出适当数量的细节。")

自然,上述讨论同样适用于其他语言,例如法语。