原文(English)

论定理的强度

[转载自 2010 年 9 月 5 日的一篇 Google Buzz 文章。]

二十世纪早期的哲学家路德维希·维特根斯坦曾著名地论证,每个数学定理都是重言式,因此所有此类定理都只包含微不足道的内容。这种观点有一定道理;当一个困难的数学问题最终被解决时,通常情况是,该解决方案确实使原始问题看起来比之前认为的要容易得多。事实上,人们可以采取反直觉的观点,认为数学的进展可以通过该学科中有多少内容已变得微不足道(或至少比以前更容易理解)来衡量。

另一方面,有一种明确的感觉,即某些数学定理比其他定理"更强",即使从严格的逻辑角度来看,它们都"只是"重言式。例如,一个定理可以被认为是强的,因为其结论强,因为其假设(或证明中使用的基础公理系统)弱,或者因为这两个原因的组合。

更一般地说,是什么使一个定理强?这不是一个精确、定义明确的概念。但衡量定理强度的一种方法是针对该定理旨在帮助解决的一类问题和疑问来测试它。例如,人们可以通过定理在各种数论量上能给出的误差项大小来衡量解析数论中定理的强度;类似地,人们可以通过定理适用的初始数据类有多大,以及由此对解获得多少控制来衡量偏微分方程中定理的强度;等等。

在其他条件相同的情况下,全称陈述(如"P(x) 对所有 x 成立")比存在陈述(如"P(x) 对某个 x 成立")更强,当然前提是量化范围非空。也有中等强度的陈述,如"P(x) 对许多 x 成立",或"P(x) 对几乎所有 x 成立"。类似地,关于特殊类型对象(例如特殊函数)的陈述通常不如关于一般类型对象(例如给定函数空间中的任意函数)的类似陈述强,再次假设其他条件相同。(在实践中,通常存在权衡:为了获得更一般的陈述,必须削弱结论,因此没有一个结果明显强于另一个。)

渐近陈述(例如,仅当某个参数如 n"足够大"时或在极限 n→∞ 时才有内容的陈述)通常不如非渐近陈述(对参数的每个固定选择 n 都有内容)强。同样,这假设其他条件相同。类似地,近似陈述(例如估计)不如精确陈述强,如果其他条件相同。

关于"简单"或易于理解的对象的陈述通常不如关于"困难"或难以理解的对象的陈述强。例如,关于实数域上方程解的陈述往往比关于整数域上方程的对应陈述弱得多(且更容易证明);关于线性算子的结果类似地比关于非线性算子的对应结果弱;关于对素数分解敏感的算术函数(如莫比乌斯函数或冯·曼戈尔特函数)的陈述通常比关于非算术函数(如对数函数)的类似陈述强;等等。

当试图阅读和理解一个长而复杂的证明时,一件有用的事情是查看论证中各种关键陈述的强度,并关注那些陈述强度显著增加的部分(例如,如果先前仅对一个 n 值成立的陈述现在被放大为对许多 n 值成立)。这种放大通常包含推动整个论证的基本技巧或思想,理解这些关键步骤通常使人更接近理解整个论证。(同样地,如果证明最终有缺陷,很可能至少有一个缺陷与某个步骤相关,在该步骤中陈述以可疑的显著程度意外变强,因此人们可以使用此类陈述的强度作为快速定位可疑论证中缺陷的方法。)

陈述强度的概念不必是绝对的,而可能依赖于上下文。例如,假设某人正在阅读一个复杂的论证,该论证声称一个在所有维度 n 上都成立的陈述。如果证明通过对该维度进行归纳来推进,那么采用以下视角是有用的:任何维度 n 中的陈述都应被视为比维度 n-1 中的陈述"更强",即使在后一种陈述在维度相等时通常被认为是更强的陈述。有了这种视角,人们就有动力关注论证中维度 n-1 的陈述以某种方式转换为维度 n 的陈述的那些段落;这些段落通常是理解论证整体策略的关键。