提供适当程度的细节
在呈现数学论证时,最重要的是让受过教育的读者有机会立即理解当下的要点,并将细节视为理所当然:他连续接收的信息应该能够一目了然地消化;在出现意外情况时,或者当他希望偶尔详细检查时,他应该只需要解决一个明确限定范围的小问题(例如,检查一个恒等式:省略两个微不足道的步骤可能导致死胡同)。缺乏经验的写作者,即使在良心发现之后,也不会给他这样的机会;在他能够发现要点之前,他必须费力地穿过一个符号迷宫,其中连最微小的下标都不能跳过。
约翰·利特尔伍德,《数学家的杂记》
论文应该详细阐述(使用 大量英语)论文中最重要、最具创新性和最关键的部分,而对常规、预期和标准的部分则应简洁。
特别是,论文应该明确指出哪些部分是最有趣的。
请注意,这意味着对该领域的专家来说是有趣的,而不仅仅是对你自己来说有趣;例如,如果你刚刚学会了如何证明一个专家们熟知且已在文献中的标准引理,这并不意味着你应该提供这个标准引理的标准证明,除非这在论文中服务于某个更大的目的(例如,通过激发一个不太标准的引理)。
相反,一些你非常熟悉但在该领域并不广为人知的计算、定义或符号约定,应该详细阐述,即使这些细节由于你在这个领域的广泛工作而对你来说是"显而易见的"。即使是一句简短的解释也比完全没有要好得多。
出于类似的原因,如果你正在使用一个相对晦涩的引理,比如说,来自你自己的一篇论文,你不应该假设你当前文章的每位读者都对你之前的论文了如指掌。在这种情况下,值得完整地陈述这个引理,并附上精确的引用(而不是随意使用诸如"根据[我之前的100页论文]中的一个引理,我们有……“这样的短语)。当引理特别关键时,有时也值得花一段话来概述证明,或者以其他方式评论这个引理的重要性及其与其他更知名结果的联系。
另请参阅”准确描述结果"。